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ABSTRACT 
 

This paper explores the ability of a team of autonomous software agents to deal with 
changing optimization environments by evolving to use the most successful algorithms at 
the points in the optimization process where they will be the most effective.  The 
communal agent team organizational structure employed in this work allows cooperation 
of agents through the products of their work and creates an ever changing set of 
individual solutions.  An evolutionary approach is used, but evolution occurs at the 
strategic rather than solution level.  As an application of this work, individual solutions 
will be tours in the familiar combinatorial optimization problem of the traveling 
salesman.  With a constantly changing set of these tours, the team, each agent running a 
different algorithm, must evolve to apply the solution strategies which are most useful 
given the set at any point in the process.  As a team, the evolutionary agents produced 
better solutions than any individual algorithm used. 
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INTRODUCTION 
 

For many complex optimization problems such as combinatorial optimization problems, 
exact algorithms and solution strategies for determining the optimal solution often don’t exist or 
are so involved that they are only practical for specific applications under specific conditions.  In 
other words, it is very difficult to determine for each possible starting point in a highly multi-
modal design space, what is the best strategy for moving the solution closer to the global 
optimum.  The conditions that motivate using specific solution strategies, if they’re even known, 
may change rapidly as the design space is traversed.   

Thus we argue that solution strategies should evolve dynamically as conditions change, 
i.e., as new solution states are discovered during the optimization process, the best strategies may 
be employed at the correct time to achieve maximum improvement of individual solutions.  
Evolution is not a new concept, but the use of evolutionary processes on the solution strategies is 
very different from typical genetic algorithms where genetic operators reproduction, mutation, 
and selection are usually applied to the solutions.  Here, the solution strategies are recombined, 
altered, and removed through these genetic operators based on their success in improving 
solutions. 

However, in order to ensure that a globally superior solution is obtained, evolving 
strategies should also be organized and coordinated in such a way that the design space is 
explored in as many promising directions as possible when new solutions are presented.  The 
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idea of cooperation of strategies for design space exploration, in addition to their evolution for 
maximum effectiveness, has led to the assertion that strategies should be embodied in 
independent, autonomous software agents, which evolve at a population level to determine the 
best solution strategy for a given set of solutions but also cooperate to more thoroughly explore 
the design space.   

The evolution of agents, representing solution strategies, at a population level is a rather 
unique concept.  Grefenstette (1992) explored the evolution of solution strategies for predator-
prey scenarios, but with the goal of producing a single ‘super strategy’ from the evolution of a 
population of strategies (a strategy consisting of a set of decision rules) which could then be 
applied to the predator-prey scenario (which was the simulated to determine the fitness of 
individual strategies).  Our aim is to evolve an efficient team of agents.  Because of the 
constantly changing set of solutions, the presence of agents in the team which run inferior 
strategies, even in diminished numbers, strengthens the performance of the entire team: again, no 
one agent can accomplish what the team as a whole is capable of. 
 

TRAVELING SALESMAN PROBLEM 
 

The Traveling Salesman Problem (TSP) was chosen as an application for the proposed 
framework because it is such a well known and straightforwardly defined problem, though the 
goal of this work is not to present an algorithm which solves the TSP better than any other 
algorithm thus far.  The objective of the TSP is, given a set of cities and a cost function for each 
pair of cities, to find the round trip tour with the lowest cost that visits each city once and only 
once.  For the problems we will explore in this paper, the cost, or distance, function between 
cities is a ‘pseudo-euclidean’ function described by Padberg and Rinaldi (1987). 
 Though more successful algorithms have been developed (the reader is referred to 
Applegate et. al (2006) and Laporte (1992) for descriptions of the best known and most current 
algorithms), for this work only a few have been chosen in three categories of algorithms, 
construction, improvement, and reduction.  Construction algorithms are so named because they 
take, as input, an incomplete or partial tour and return either a complete tour or a longer partial 
tour after adding cities in a predefined manner.  For this study three simple and straightforward 
construction algorithms, nearest insertion, farthest insertion, and arbitrary insertion, were used 
(Golden et.al. 1985).  Improvement algorithms, as their name would suggest, improve an existing 
partial or complete tour by rearranging the order of the cities in the tour based on different rules.  
There were three improvement algorithms used in this study, 2-Opt (Bentley, 1990), 3-Opt 
(Syslo et. al 1983), and a simple mutation.  Reduction algorithms break down complete tours into 
partial tours.  In this work, two very basic reduction algorithms are employed.  The first of these 
is random reduction, which involves simply randomly removing a random number of cities in the 
tour.  Best partial reduction, the second reduction algorithm, returns the best partial tour (the tour 
with the shortest average leg length) containing half of the total number of cities in the same 
consecutive order as the original tour.   
 
 
 
 
 
 

62



METHODOLOGY 
 
Evolutionary Agents 

 
To perform genetic operations such as crossover and mutation, individuals in an evolving 

population are most easily represented by binary strings.  The binary string defining an 
individual agent in the evolving team of the proposed framework represents the decisions the 
agent will make in its lifetime.  We argue that decisions should be the primary element of an 
agent’s genetic makeup because autonomy, the ability of an agent to make decisions on its own 
without being told what to do, is essential to the definition of an agent (Wooldridge et. al. 1995; 
Sachdev 1998).  For the particular application of the TSP, agent decisions were defined as 
follows: 
 

1. From what memory will a tour be chosen, 
2. Which tour from that memory will be worked on, 
3. How will the chosen tour be worked on (i.e. which algorithm will be run), and 
4. Where (which memory) will the new tour be put once work is completed on it.  

 
Thus, the genetic string of each agent consists of four binary chromosomes identifying these 

properties (see Figure 1).  The choice methods define the characteristics of a tour which an agent 
will choose, i.e. if the agent will choose the best tour, the worst tour, be biased towards better 
tours, or be biased towards worse tours.  The significance of the memories will be discussed in 
the next section.  
 

 
Figure 1  Structure of proposed evolving agent genetic string 

 
Agent Organization: Creating an Evolutionary Multi-Agent Team 

 
The agent system architecture developed is similar to the asynchronous team architecture 

developed by Talukdar, et. al. (1998) in that it incorporates the idea of shared memories, which 
allow agents to cooperate indirectly by providing a place for agents to present their work so that 
it is visible and available to others.  However, in those systems the characteristics of each agent 
and the rules for their relationships to the memories are specified a priori (Sachdev 1998; De 
Souza 1993).  In the proposed system the agent-memory cycles are evolved by including input 
space and output space decisions in the agents’ chromosomal representations (toMemory and 
fromMemory).  For the specific application of the Traveling Salesman Problem, only two 
memories were used: one for partial tours (tours that do not contain all of the cities) and one for 
complete tours.  The tours in these memories evolve over time through the genetically 
determined actions of the agents, rather than through recombination and mutation within the 
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population of solutions as would occur in a typical genetic algorithm (Grefenstette et. al. 1985; 
Potvin 1996). 

 
ALGORITHM DESCRIPTION 

  
Our proposed Evolutionary Multi-Agent System (EMAS) algorithm simulates temporal 

asynchrony by dividing the overall process into discrete iterations.  Each iteration, all agents 
undergo activation, at which point they make decisions and perform actions based on their 
genetic sequence.  After all agents have been activated, reproduction occurs, in which parents 
are selected and new agents are created.  Reproduction and activation both involve a simple 
operator for mutation.  Finally, the agent community undergoes selection, where the weakest 
individuals are removed from the population.  In this section, each of these important functions is 
discussed in detail. 
 
Mutation 
  

In the proposed framework, mutation is used for two purposes.  The first purpose, 
common to most evolutionary and genetic algorithms, is to make the system more stochastic – 
mutation allows a more thorough exploration of the design space for individuals by introducing 
randomness into their creation.  In the proposed framework individuals are also mutated when 
they are not being successful.  This secondary mutation is a way of allowing individual agents to 
adapt to an environment by trying new decision methods, achieving diversity by variation.  Both 
types of mutation are random, meaning that a single randomly chosen bit is altered in the binary 
gene.   
 
Activation 

 
Each iteration, all agents are activated.  Activation of an agent consists of verification that 

it is able to work (some memory-algorithm combinations are incompatible, i.e. construction 
cannot be performed on a complete tour) and simulation and testing to determine if it will make a 
positive difference.  Simulation is an important step: agents will not place a solution they know 
will decrease the average solution quality into their destination memory.  This keeps the quality 
of solutions in the memory high (i.e. keeps the average tour length low).  As stated earlier, if an 
agent is unsuccessful, i.e. unable to improve the average solution quality, after three tries, the 
agent undergoes mutation.  If an agent is successful in coming up with a solution that increases 
the average solution quality, it then inserts the new tour into its destination memory.  A flowchart 
of agent activation is shown in Figure 2. 
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Figure 2   Flowchart of agent activation 
 

 
Fitness 

 
A key principle in both selection and reproduction is the concept of fitness.  It is often 

difficult to establish a meaningful method for deciding who should live and reproduce and who 
should not.  Thus, before going into detail on the procedure for reproduction and selection, it is 
important to establish the method of evaluation of individuals.  In the proposed framework, the 
indication of an agent’s success is embodied in its score.  Score is based both on the amount of 
improvement made by the agent to the average solution quality in its destination memory and the 
number of times it has been activated (its ‘age’).  When agents mutate, their score is reset to zero 
but their age remains the same. 
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Reproduction 

 
After activating each agent in an iteration, agents with a score above zero are paired up as 

parents and allowed to reproduce. Each agent may only reproduce once in an iteration, and 
during reproduction is subjected to crossover with a randomly assigned partner at a single 
random crossover point.  The resulting two children each have a 50% chance of being mutated.  
After they are created, the children agents are activated.  
 
Selection 
 

When new agents are added through reproduction, the worst agents are selected from the 
population to be eliminated, keeping the population size constant.  Selection begins by sorting 
the agents by score from lowest to highest.  Agents with the same score are then sorted by age, 
the oldest on the bottom and the youngest on the top.  Once sorting is complete, agents are 
removed from the bottom of the list until the population is back to its original size. 
 
 

RESULTS 
 

Though our primary goal in this work was not to develop a method for solving TSP to 
optimality, the quality of the solutions reached by the evolutionary team of agents proposed in 
this work was very good compared to the performance of the individual algorithms on their own.  
The solution quality reached by our Evolutionary Multi-Agent System (EMAS) algorithm were 
consistently better than those reached by the other base algorithms and hybrid algorithms (a 
priori designated construction algorithm followed by improvement algorithm).   

The base construction algorithms nearest and farthest insertion always produce the same 
final optimization solution for a given starting city, so running these algorithms for each of the 
starting cities is a good measure of the average effectiveness of each of these base algorithms.  
Similarly, the same starting tour will always lead to the same final optimization solution after 
running any of the base improvement algorithms presented.  Though the random order of city 
addition in arbitrary insertion makes the final tour different even for the same starting city, 
testing each starting city still provides a good estimation for the effectiveness of this algorithm as 
well.  Thus, for the 48-city problem, EMAS was run 48 times (100 iterations each time) and 
compared to the solutions resulting from running construction algorithms from each starting city 
and then running improvement algorithms on the resultant tours.  Table 1 clearly indicates that, 
on average, the solution quality produced by the EMAS algorithm is much better than any of 
these hybrid algorithms.  Similarly, the histogram in Figure 3 shows that the majority of 
solutions reached by the EMAS algorithms were within 1% of optimal, whereas only two of the 
other hybrid algorithms had any solutions at all in that range.    
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Table 1  Mean and standard deviation of hybrid algorithms compared to EMAS algorithm for 48-
city problem 
 
 

 
 

 
 
Figure 3  Histogram of 48-city problem comparing best solution consistency of EMAS to that of 
hybrid algorithms 

 
 
 The consequence of this increased quality of solutions was computation time.  Because 
EMAS involves running several of the base algorithms each iteration, it is expected that the 
amount of time required to reach the solutions generated is much higher.  A single run of 3-Opt 
on any individual starting tour for ATT48 would take less than a second, whereas a single trial of 
EMAS run on ATT48 for 100 iterations takes an average of around 8 seconds.  As mentioned 
earlier, however, it doesn’t matter how many times this algorithm is run on the same starting 

Algorithm Mean (% from Optimal) St. Dev. (%) 

3-Opt+NI 3.27 2.67 
3-Opt+FI 3.47 1.52 
3-Opt+AI 3.08 1.32 
2-Opt+NI 9.61 2.32 
2-Opt+FI 6.68 1.1 
2-Opt+AI 6.09 2.06 
EMAS 0.68 0.61 
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tour, it will always produce the same final tour, which as we have just shown for the base 
algorithms (construction only and improvement only) is usually worse than the result of the 
EMAS algorithm.  We show in Table 3, however, that even running the same number of 
algorithms as would be run during a single trial of EMAS (10 algorithms * 100 iterations) in 
random order without employing the evolutionary aspect of the EMAS algorithm will still result 
in worse solutions.   
 
Table 2 Comparison of EMAS to randomly generated algorithm activation order for ATT48 
(Averages of 50 trials) 
 

 Mean (% from Optimal of 
average tour in Complete 

memory) 

St. Dev. 
(%)  

Avg. Time 
(sec) 

1000 Randomly Ordered Algorithms 4.83 0.354 2.45 
EMAS 4.38 1.66 8.33 

 
 

SUMMARY AND DISCUSSION 
 

The results present a convincing argument for the evolution of agents in a team at the 
population level.  Decisions have likewise proven to be a useful genetic property of agents in 
such an evolutionary setting.  The evolutionary teams evolved to generate better solutions than 
the base algorithms alone.  We have also shown that the strength of the EMAS algorithm lies in 
its ability to evolve the best team each iteration.  Evolution and activation within this team 
results in solutions that are better than simply running the same number of algorithms randomly 
on a similar set of solutions.  We thus argue that the use of evolutionary agents to determine the 
best solution strategies dynamically is a strong approach to adaptive optimization. 

We have also begun to test this strategy with a much larger, 532 city TSP with even 
better results in terms of solution quality.  In so doing we have identified patterns in how the 
EMAS algorithm allocates types of agents throughout its run.  We hypothesize that we can take 
advantage of such patterns to improve run time in future work. 
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